Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm ; 74(1): 117-130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554383

RESUMO

Statin treatment may increase the risk of diabetes; there is insufficient data on how statins affect glucose regulation and glycemic control and the effects of statins on liver enzymes related to carbohydrate metabolism have not been fully studied. Therefore, we aimed to compare the effects of the statin derivatives, pravastatin, and rosuvastatin, on carbohydrate metabolism in an experimental diabetic rat model. Female Wistar albino rats were used and diabetes was induced by intraperitoneal injection of streptozotocin. Thereafter, 10 and 20 mg kg-1 day-1 doses of both pravastatin and rosuvastatin were administered by oral gavage to the diabetic rats for 8 weeks. At the end of the experiment, body masses, the levels of fasting blood glucose, serum insulin, insulin resistance (HOMA-IR), liver glycogen, and liver enzymes related to carbohydrate metabolism were measured. Both doses of pravastatin significantly in creased the body mass in diabetic rats, however, rosuvastatin, especially at the dose of 20 mg kg-1 day-1 reduced the body mass signi ficantly. Pravastatin, especially at a dose of 20 mg kg-1 day-1, caused significant increases in liver glycogen synthase and glucose 6-phosphate dehydrogenase levels but significant decreases in the levels of glycogen phosphorylase, lactate dehydrogenase, and glucose-6-phosphatase. Hence, pravastatin partially ameliorated the adverse changes in liver enzymes caused by diabetes and, especially at the dose of 20 mg kg-1 day-1, reduced the fasting blood glucose level and increased the liver glycogen content. However, rosuvastatin, especially at the dose of 20 mg kg-1 day-1, significantly reduced the liver glycogen synthase and pyruvate kinase levels, but increased the glycogen phosphorylase level in diabetic rats. Rosuvastatin, 20 mg kg-1 day-1 dose, caused significant decreases in the body mass and the liver glycogen content of diabetic rats. It can be concluded that pravastatin, especially at the dose of 20 mg kg-1 day-1 is more effective in ameliorating the negative effects of diabetes by modulating carbohydrate metabolism.


Assuntos
Diabetes Mellitus Experimental , Inibidores de Hidroximetilglutaril-CoA Redutases , Feminino , Ratos , Animais , Glicemia , Ratos Wistar , Rosuvastatina Cálcica/efeitos adversos , Pravastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipoglicemiantes/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Glicogênio Sintase/metabolismo , Glicogênio Sintase/farmacologia , Glicogênio Hepático/efeitos adversos , Glicogênio Hepático/metabolismo , Hemoglobinas Glicadas , Glucose/metabolismo , Metabolismo dos Carboidratos , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Fígado/metabolismo , Insulina/farmacologia
2.
Tissue Cell ; 86: 102265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948956

RESUMO

Acetamiprid (ACMP) is a second-generation neonicotinoid that has been extensively used in the last few years. The present study examined the toxic effects of ACMP on the pancreas and glucose homeostasis through the evaluation of histological and biochemical changes and the possible ameliorative role of fenugreek seed extract (FG). Fifty adult albino rats were divided into 5 groups: negative control, positive control, FG-treated, ACMP-treated, and ACMP + FG-treated groups by oral gavage for 12 weeks. The ACMP-treated group highlighted significant elevations in plasma glucose, glycosylated haemoglobin levels (HbA1c), serum amylase, and serum lipase, along with a decrease in plasma insulin levels. In addition, significant increases in tumour necrosis factor- alpha (TNF-α) and malondialdehyde (MDA) were associated with reductions in the levels of interleukin 10 (IL-10), glutathione peroxidase, and catalase. Moreover, glucose-6-phosphatase and glycogen phosphorylase were significantly increased, with a significant reduction in hexokinase and liver glycogen stores. These biochemical changes were associated with histological changes in pancreatic sections stained by haematoxylin and eosin, Masson stain, and Orcein stain. ACMP-treated cells showed a marked reduction in ß- cell immune reactivity to insulin, with pronounced p53, and beclin 1 immune expression. The use of FG with ACMP induced partial protection except for hexokinase and glycogen phosphorylase.


Assuntos
Aminopiridinas , Antioxidantes , Hexoquinase , Trigonella , Ratos , Animais , Antioxidantes/metabolismo , Hexoquinase/metabolismo , Ratos Wistar , Estresse Oxidativo , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Insulina/metabolismo , Apoptose , Homeostase , Autofagia , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Glucose/metabolismo
3.
Mol Cell Neurosci ; 126: 103863, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268282

RESUMO

Glucose accesses the brain primarily via the astrocyte cell compartment, where it passes through the glycogen shunt before catabolism to the oxidizable fuel L-lactate. Glycogen phosphorylase (GP) isoenzymes GPbb and GPmm impose distinctive control of ventromedial hypothalamic nucleus (VMN) glucose-regulatory neurotransmission during hypoglycemia, but lactate and/or gliotransmitter involvement in those actions is unknown. Lactate or the octadecaneuropeptide receptor antagonist cyclo(1-8)[DLeu5] OP (LV-1075) did not affect gene product down-regulation caused by GPbb or GPmm siRNA, but suppressed non-targeted GP variant expression in a VMN region-specific manner. Hypoglycemic up-regulation of neuronal nitric oxide synthase was enhanced in rostral and caudal VMN by GPbb knockdown, yet attenuated by GPMM siRNA in the middle VMN; lactate or LV-1075 reversed these silencing effects. Hypoglycemic inhibition of glutamate decarboxylase65/67 was magnified by GPbb (middle and caudal VMN) or GPmm (middle VMN) knockdown, responses that were negated by lactate or LV-1075. GPbb or GPmm siRNA enlarged hypoglycemic VMN glycogen profiles in rostral and middle VMN. Lactate and LV-1075 elicited progressive rostral VMN glycogen augmentation in GPbb knockdown rats, but stepwise-diminution of rostral and middle VMN glycogen after GPmm silencing. GPbb, not GPmm, knockdown caused lactate or LV-1075 - reversible amplification of hypoglycemic hyperglucagonemia and hypercorticosteronemia. Results show that lactate and octadecaneuropeptide exert opposing control of GPbb protein in distinct VMN regions, while the latter stimulates GPmm. During hypoglycemia, GPbb and GPmm may respectively diminish (rostral, caudal VMN) or enhance (middle VMN) nitrergic transmission and each oppose GABAergic signaling (middle VMN) by lactate- and octadecaneuropeptide-dependent mechanisms.


Assuntos
Hipoglicemia , Núcleo Hipotalâmico Ventromedial , Ratos , Animais , Núcleo Hipotalâmico Ventromedial/metabolismo , Isoenzimas/metabolismo , Ratos Sprague-Dawley , Hipoglicemia/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Neurotransmissores/farmacologia , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Lactatos/metabolismo , Lactatos/farmacologia , Hormônios/metabolismo , Hormônios/farmacologia
4.
Acta Neurobiol Exp (Wars) ; 81(2): 196-206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170267

RESUMO

Glycogen metabolism shapes ventromedial hypothalamic nucleus (VMN) control of glucose homeostasis. Brain glycogen mass undergoes compensatory expansion post­recovery from insulin­induced hypoglycemia (IIH). Current research utilized combinatory high­resolution microdissection/high­sensitivity Western blotting to investigate whether IIH causes residual adjustments in glycogen metabolism within the metabolic­sensory ventrolateral VMN (VMNvl). Micropunch­dissected tissue was collected from rostral, middle, and caudal levels of the VMNvl in each sex for analysis of glycogen synthase (GS) and glycogen phosphorylase (GP)­muscle type (GPmm; norepinephrine­sensitive) and GP­brain type (GPbb; glucoprivic­sensitive) isoform expression during and after IIH. Hypoglycemic suppression of VMNvl GS levels in males disappeared or continued after reestablishment of euglycemia, according to sampled segment. Yet, reductions in female VMNvl GS persisted after IIH. Males exhibited reductions in GPmm content in select rostro­caudal VMNvl segments, but this protein declined in each segment post­hypoglycemia. Females, rather, showed augmented or diminished GPmm levels during IIH, but no residual effects of IIH on this protein. In each sex, region­specific up­ or down­regulation of VMNvl GPbb profiles during glucose decrements were undetected post­recovery from IIH. Results provide novel proof of estradiol­dependent sex­dimorphic patterns of VMNvl GP variant expression at specific rostro­caudal levels of this critical gluco­regulatory structure. Sex differences in persistence of IIH­associated GS and GPmm patterns of expression after restoration of euglycemia infer that VMNvl recovery from this metabolic stress may involve dissimilar glycogen accumulation in male versus female.


Assuntos
Estradiol/farmacologia , Glicogênio Fosforilase/metabolismo , Hipoglicemiantes/farmacologia , Fatores Sexuais , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Animais , Estradiol/metabolismo , Feminino , Glucose/metabolismo , Glucose/farmacologia , Glicogênio/metabolismo , Glicogênio/farmacologia , Glicogênio Fosforilase/farmacologia , Masculino , Ratos
5.
Neuromuscul Disord ; 30(9): 734-741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32811700

RESUMO

McArdle disease results from a lack of muscle glycogen phosphorylase in skeletal muscle tissue. Regenerating skeletal muscle fibres can express the brain glycogen phosphorylase isoenzyme. Stimulating expression of this enzyme could be a therapeutic strategy. Animal model studies indicate that sodium valproate (VPA) can increase expression of phosphorylase in skeletal muscle affected with McArdle disease. This study was designed to assess whether VPA can modify expression of brain phosphorylase isoenzyme in people with McArdle disease. This phase II, open label, feasibility pilot study to assess efficacy of six months treatment with VPA (20 mg/kg/day) included 16 people with McArdle disease. Primary outcome assessed changes in VO2peak during an incremental cycle test. Secondary outcomes included: phosphorylase enzyme expression in post-treatment muscle biopsy, total distance walked in 12 min, plasma lactate change (forearm exercise test) and quality of life (SF36). Safety parameters. 14 participants completed the trial, VPA treatment was well tolerated; weight gain was the most frequently reported drug-related adverse event. There was no clinically meaningful change in any of the primary or secondary outcome measures including: VO2peak, 12 min walk test and muscle biopsy to look for a change in the number of phosphorylase positive fibres between baseline and 6 months of treatment. Although this was a small open label feasibility study, it suggests that a larger randomised controlled study of VPA, may not be worthwhile.


Assuntos
Encéfalo/patologia , Glicogênio Fosforilase/metabolismo , Músculo Esquelético/citologia , Ácido Valproico/uso terapêutico , Animais , Estudos de Viabilidade , Glicogênio Fosforilase/farmacologia , Humanos , Fibras Musculares Esqueléticas/patologia , Fosforilases/metabolismo , Projetos Piloto , Qualidade de Vida
6.
PLoS One ; 7(3): e32997, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427926

RESUMO

We evaluated 7 C. muridarum ORFs for their ability to induce protection against chlamydial infection in a mouse intravaginal infection model. These antigens, although encoded in C. muridarum genome, are transcriptionally regulated by a cryptic plasmid that is known to contribute to C. muridarum pathogenesis. Of the 7 plasmid-regulated ORFs, the chlamydial glycogen phosphorylase or GlgP, when delivered into mice intramuscularly, induced the most pronounced protective immunity against C. muridarum intravaginal infection. The GlgP-immunized mice displayed a significant reduction in vaginal shedding of live organisms on day 14 after infection. The protection correlated well with a robust C. muridarum-specific antibody and a Th1-dominant T cell responses, which significantly reduced the severity but not overall incidence of hydrosalpinx. The GlgP-induced partial protection against upper genital tract pathology suggests that GlgP may be considered a component for a multi-subunit vaccine. These results have demonstrated that intramuscular immunization of mice with purified proteins can be used to identify vaccine antigens for preventing intravaginal infection with C. trachomatis in humans.


Assuntos
Antígenos de Bactérias/genética , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Glicogênio Fosforilase/farmacologia , Doenças Vaginais/microbiologia , Análise de Variância , Animais , Anticorpos Antibacterianos/imunologia , Western Blotting , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/enzimologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Glicogênio Fosforilase/administração & dosagem , Glicogênio Fosforilase/imunologia , Células HeLa , Humanos , Injeções Intramusculares , Camundongos , Microscopia de Fluorescência , Fases de Leitura Aberta/genética , Plasmídeos/genética , Linfócitos T/imunologia , Doenças Vaginais/imunologia , Doenças Vaginais/prevenção & controle , Eliminação de Partículas Virais/efeitos dos fármacos
7.
Int J Med Inform ; 70(2-3): 337-44, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12909186

RESUMO

INTRODUCTION: We have recently shown, in studies with patients with Type 1 (insulin dependent) diabetes, that alcohol intake at 21:00 h significantly reduced blood glucose values after 10-12 h, compared with control studies with no alcohol. HYPOTHESIS: We hypothesised that this was due to the following effects of alcohol: (1) alcohol metabolism increases NADH, leading to a reduction in hepatic gluconeogenesis; (2) increased glycogen phosphorylase activity depletes hepatic glycogen stores; (3) after the alcohol is metabolised, hepatic insulin sensitivity is increased, leading to the restoration of glycogen stores and reduction in blood glucose levels; and (4) consequently, after several hours, glycogen stores and insulin sensitivity return to normal. RESULTS: A model describing these changes (DiasNet-Alcohol) was implemented into the DiasNet model of human glucose metabolism. Our study suggests that the DiasNet-Alcohol model gives a reasonable approximation of these effects of alcohol on blood glucose concentration observed in our study and supports our hypothesis for the mechanism behind these effects in Type 1 diabetes.


Assuntos
Glicemia/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Sistemas de Apoio a Decisões Clínicas , Diabetes Mellitus Tipo 1 , Etanol/farmacologia , Hipoglicemia/etiologia , Modelos Teóricos , Teorema de Bayes , Tomada de Decisões Assistida por Computador , Glicogênio/metabolismo , Glicogênio Fosforilase/farmacologia , Humanos , NAD/metabolismo
8.
Biochem J ; 371(Pt 1): 81-8, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12519071

RESUMO

The ryanodine receptor, a Ca(2+)-releasing channel in sarcoplasmic reticulum (SR), plays an important role in the excitation-contraction coupling of skeletal muscle. In a previous study [Hirata, Nakahata and Ohizumi (2000) Mol. Pharmacol. 57, 1235-1242], we reported that mastoparan caused Ca(2+) release through ryanodine receptor from the heavy fraction of SR (HSR) isolated from rabbit skeletal muscle, and that it specifically bound to a 97 kDa protein which was distinct from Ca(2+)-pump or triadin. The present study was undertaken to identify and characterize the 97 kDa mastoparan-binding protein. The 97 kDa protein was purified from solubilized HSR by DEAE-Sepharose column chromatography and preparative SDS/PAGE. The partial amino acid sequence of the purified 97 kDa protein was matched with that of glycogen phosphorylase (GP). The proteolytic cleavage pattern of the 97 kDa protein was identical with that of GP. Furthermore, [(125)I-Tyr(3)]mastoparan specifically bound to GP. Interestingly, mastoparan-induced Ca(2+) release was inhibited by exogenous addition of GP-a, and mastoparan dissociated GP from HSR. These results indicate that the 97 kDa mastoparan-binding protein is GP, which negatively regulates Ca(2+) release from HSR. There may be a functional cross-talk between Ca(2+) release from HSR and glycogenolysis for energy supply mediated through GP in skeletal muscles.


Assuntos
Cálcio/metabolismo , Glicogênio Fosforilase/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Venenos de Vespas/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia em Agarose , Eletroforese em Gel de Poliacrilamida , Glicogênio Fosforilase/isolamento & purificação , Glicogênio Fosforilase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Radioisótopos do Iodo/metabolismo , Dados de Sequência Molecular , Músculo Esquelético/química , Músculo Esquelético/efeitos dos fármacos , Peptídeos , Ligação Proteica/efeitos dos fármacos , Coelhos , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/efeitos dos fármacos , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Venenos de Vespas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...